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Abstract
We consider the hydrogen molecular ion H+

2 in the fixed nuclear approximation,
in the presence of a strong homogeneous magnetic field. We determine the
leading asymptotic behaviour for the equilibrium distance between the nuclei
of this molecule in the limit when the strength of the magnetic field goes to
infinity.

PACS number: 31.15.−p

1. Introduction

One-dimensional Hamiltonians with delta function interactions have been used for a long time
as toy models in atomic physics (see, e.g. [5], and references therein). However, with the
study of matter in the presence of strong magnetic fields, these models have become more
physically relevant.

It is now well established that atoms and molecules in the presence of a strong uniform
magnetic field behave like systems in one dimension. In fact, a strong magnetic field confines
the electrons to Landau orbitals which are orthogonal to the direction of the applied magnetic
field. In this manner, only the behaviour of the electrons along the direction of the magnetic
field is subject to the influence of their Coulomb interaction with the nuclei or to the interaction
among themselves. Since one can extend the results of [4, section 9] to the present molecular
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case, this genuine molecular case reduces effectively to the one-dimensional ion model
where Coulombic interactions between the electron and the nuclei are replaced by delta
point interactions, see (1).

2. The asymptotic model

Our model consists of two nuclei, each one of nuclear charge Z, separated by a distance R. As
we have discussed in the introduction, for large values of the magnetic field, the molecule we
are considering is described by an asymptotic model defined by the following Hamiltonian:

H = L2Z2

[
p2

z

2
− δ

(
z − RLZ

2

)
− δ

(
z − RLZ

2

)]
+

Z2

R
, (1)

acting on L2(R) (see [1] for more details). The parameter L that appears in this Hamiltonian
depends on the strength of the magnetic field and it is given explicitly by L = 2W(

√
B/2),

where W is the Lambert function [6]. If one considers the function y(x) = x exp(x), for
x ∈ [0,∞), the Lambert function is its inverse, i.e., x = W(y). It is elementary to derive the
following asymptotics:

L = log B − 2 log(log B) + O
(

log(log B)

log B

)
, B → ∞.

The ground state energy of this system, which is a function of R,Z and L, can be computed
in closed form in terms of the Lambert function, and it is given by

E(R,L,Z) = −L2Z2 α2
0

2
+

Z2

R
, (2)

where

α0 ≡ 1 +
W(RLZ e−RLZ)

RLZ
.

The first term in (2) is the electronic energy, while the second term is just the Coulomb
repulsion between the nuclei.

In this section we study the dependence of the ground state energy E, of the asymptotic
model, on the nuclear separation R. In particular, we shall determine for which values of the
parameters Z and L, the asymptotic model exhibits binding.

Let

F(x) ≡ 1
2 (x + W(x e−x))2. (3)

In terms of F(x), the ground state energy of H can be written as

E(R,L,Z) = −F(RLZ)

R2
+

Z2

R
= L2Z2

x

(
Z

L
− F(x)

x

)
, (4)

where x = RLZ. When the nuclei are infinitely apart, the ground state energy of H is
given by

Eat = −Z2L2

2
. (5)

As usual, we define the binding energy of the molecule as the difference

EB = sup
R

[Eat − E(R,L,Z)]. (6)

The molecule will exist (in the frame of this asymptotic model) if and only if EB > 0, i.e., if
Eat − E(R,L,Z) > 0 for some R ∈ (0,∞). In case EB > 0, we will denote Req the value of
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R which maximizes Eat − E(R,L,Z).Req is the actual separation between the nuclei of the
molecule described by the asymptotic model.

In terms of x = RLZ and the Lambert function, we can write

Eat − E(R,L,Z) = L2Z2

x

(
J (x) − Z

L

)
, (7)

where

J (x) ≡ F(x)

x
− x

2
= (2x + W(x e−x))W(x e−x)

2x
. (8)

Using (7), we see that there will be a molecule in the asymptotic model provided there is
an x for which J (x) > Z/L. One can readily check that the function J (x) is positive
in (0,∞), J (0) = 0 and limx→∞ J (x) = 0. Moreover, J (x) has only one maximum in
(0,∞), located at xJ ≈ 0.84 and J (xJ ) ≈ 0.3205, see lemma 1 in the appendix. Thus,
if (Z/L) < J(xJ ), the molecule exists (in other words, there is a global minimum of
−Eat + E(R,L,Z)) and therefore EB > 0.

In case Z/L > J(xJ ), the molecule will not bind. However, there could still be a local
minimum of −Eat + E(R,L,Z) in (0,∞). If there is a local minimum, but EB � 0, we will
say that there is a resonance. To study local minima, we compute

∂E

∂R
(R,L,Z). (9)

Using (4) and the properties of the Lambert function we can express

∂E

∂R
(R,L,Z) = LZ

R2

(
G(x) − Z

L

)
, (10)

where, as before, x = RLZ and

G(x) ≡ (x + W(x e−x))2W(x e−x)

x(1 + W(x e−x))
. (11)

Using the properties of the Lambert function, one can check that the function G(x) is
positive in (0,∞),G(0) = 0, limx→∞ G(x) = 0. Moreover, G(x) has a unique maximum
in this interval, attained at xG ≈ 1.95 and G(xG) ≈ 0.4398, see lemma 2 in the appendix.
One can compare the functions J and G defined above. It turns out that J (x) � G(x) if
0 � x � xJ , whereas J (x) � G(x) if xJ � x < ∞, hence G(xJ ) = J (xJ ) (i.e., both
functions agree at the maximum of J ). From (10) and the properties of G we see that if
Z/L > G(xG),−Eat + E(R,L,Z) does not have a local minimum in (0,∞). On the other
hand, if J (xJ ) < Z/L < G(xG),−Eat + E(R,L,Z) has a local minimum, i.e., we will have
a resonance.

We can summarize our discussion above in the following theorem. See also figure 1.

Theorem 1. For the system described by the Hamiltonian (1), the energy curve −Eat +
E(R,L,Z)

(a) has no local minimum if G(xG) ≈ 0.44 < Z
L

,
(b) has a local minimum if J (xJ ) ≈ 0.32 < Z

L
< G(xG) ≈ 0.44,

(c) has a global minimum (i.e, there is binding) if Z
L

< J(xJ ) ≈ 0.32; we denote by Req

the position of this minimum.

For fixed nuclear charge Z,Z/L can be made arbitrarily small by choosing the strength of
the magnetic field sufficiently large, since L = 2W(

√
B/2). Hence, for sufficiently large B,
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0.84 1.95
RLZ

0.32

0.44

Z
L

Nothing

Resonance

Bound state

J,G

Figure 1. Graphs of J (thick solid curve), G (thick dashed curve), and Z/L (thin horizontal lines).

−Eat + E(R,L,Z) will have a global minimum. In this case, it follows from (10) that the
position of this minimum is given by

Req = 1

LZ
G−1

(
Z

L

)
. (12)

If Z/L � 1, we get from (12) and (A.20) in the appendix that

Req = 1

2

1

L3/2Z1/2
+

5

8

1

L2
+

45

64

Z1/2

L5/2
+

1

L2
O

(
Z

L

)
. (13)

For Z/L � 1, the minimum value of the energy, E(Req, L,Z), can be obtained to leading
order, using (4), (13) and (A.17) in the appendix. Thus we obtain,

Emin ≡ E(Req, L,Z) = −2Z2L2(1 − 2θ + 5
4θ2 + O(θ3)

)
, (14)

where we have set θ = √
Z/L.

For our discussion below, it is convenient to give the asymptotic behaviour of the whole
energy curve, E(R,L,Z), for large values of the magnetic field (i.e., for large values of L).
Using (4) and the asymptotic properties of F(x), given in the appendix, see (A.17), we obtain

E(R,L,Z) = L2Z2

x

(
Z

L
− 2x + 4x2 − 10x3 + O(x4)

)
, (15)

with x = RLZ. This asymptotic behaviour is valid for values of R such that R � 1
LZ

.

3. The leading behaviour of the nuclear separation of the H+
2 molecule in the

presence of a strong magnetic field

With the help of the calculations on the asymptotic model of Section 2, we will compute the
leading behaviour of the equilibrium nuclear separation of the H+

2 molecule, in the limit when
the strength of the magnetic field goes to infinity. Since we are interested in the H+

2 molecule,
we set Z = 1 throughout this section. Denote by req the equilibrium distance between the
nuclei of the H+

2 molecule in the presence of a strong magnetic field. Here we will prove the
following estimate for req.

Theorem 2.

req = 1

2L3/2
+ O

(
L− 7

4
)
, as B → ∞ (16)

where L = 2W(
√

B/2) and W is the Lambert function ([6]).
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R2R1
req

R

E

Figure 2. A sketch of the curves R → E(R, L, Z) and R → E(R, L, Z) ± α± with the points
R1,2 and req.

In [1], we have said that the ground state energy of the H+
2 molecule can be estimated

in terms of the ground state energy of the asymptotic model, using the norm-resolvent
convergence method developed by Brummelhuis and Duclos in [4]. We will denote by
E(R,L, 1) the ground state energy of the asymptotic model studied in section 2, for Z = 1
and by e(R,L, 1) the ground state energy of the asymptotic model. As said in [1], for B large
enough one has

E(R,L, 1) − α− � e(R,L, 1) � E(R,L, 1) + α+, (17)

where α± are positive constants that only depend on L. Moreover,

α+ + α− = cL, (18)

where c is a constant, independent of L and R. These above two equations can be derived with
the method of [4]; see in particular theorem 1.5 and section 9 there.

In section 2, we have computed the equilibrium distance, Req (13), and the minimum
energy, Emin (14), for the asymptotic delta model. Given these values and the error estimates
embodied in (17) and (18), we can estimate the actual separation of the nuclei of the H+

2
molecule in the presence of a strong magnetic field. In figure 2, we have pictured the energy
curve for the asymptotic model, E(R,L, 1), as well as the curves E(R,L, 1) ± α±. Recall
that we denote by req the equilibrium distance of the nuclei of the real molecule in the presence
of a strong magnetic field; it follows from the figure that

R1 < req < R2, (19)

where R1 and R2 are the solutions of the equation

Emin + α+ = E(R,L, 1) − α−,

i.e.,

Emin + cL = E(R,L, 1); (20)

one can see easily that they both go to 0 as L → ∞, see the end of the appendix. Replacing
the asymptotic behaviour (14) for Emin (with Z = 1) and (15) for E(Ri, L, 1) in (20), we get

−2L2

(
1 − 2L−1/2 +

5

4
L−1 + O(L−3/2)

)
+ cL = L2

x

(
1

L
− 2x + 4x2 − 10x3 + O(x4)

)
,

(21)
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where x = RiL (since Z = 1). It follows that(
1 − 2L

1
2 x

)2 = (
c − 5

2

)
x + 10x3L + O(x4L) + O

(
L− 1

2 x
)
. (22)

Assume now that L
1
2 x is not bounded, this would mean that there exists a subsequence of L

values so that L
1
2 x → ∞. Substituting this sequence in (22) gives

4Lx2 ∼ (
c − 5

2

)
x + 10x3L ∼ 10x3L

since x2L → ∞; however, this is a contradiction. Using in (22) that RiL
3
2 = xL

1
2 is bounded

gives

Ri = 1

2L
3
2

+ O
(
L− 7

4
)
,

which proves the theorem.
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Appendix A

Definition 1. We define the function J (x) as

J (x) ≡ W(y) +
W(y)2

2x
, (A.1)

for all 0 � x < ∞, where y = x exp(−x), and W denotes the Lambert function, as defined
in section 2. Since in the following W as well as its derivative is always evaluated at
y = x exp(−x), we shall sometimes omit this argument.

In our next lemma, we prove some properties of J (x) needed in the main body of the
manuscript.

Lemma 1. The function J (x) is positive in (0,∞), it is real analytic, it has a unique maximum,
with value max J ∼ 0.32 taken at xJ ∼ 0.84.

Proof. That J is positive in (0,∞) follows immediately from (A.1) and the definition of
W . The Lambert function is real analytic. Moreover, for small values of its argument,
W(y) = y + O(y), thus W(y)2/2x will also be real analytic in (0,∞). Hence, we need only
prove that J has a unique critical point (a maximum) in (0,∞). Taking the derivative of (A.1)
with respect to x, we get

dJ

dx
= dW

dy

dy

dx
+ W

dW

dy

dy

dx

1

x
− W(y)2

2x2
. (A.2)

From the definition of the Lambert function, it follows that

dW

dy
= W(y)

y(1 + W(y))
, (A.3)
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and from the definition of y = x exp(−x) we have

dy

dx
= y

x
(1 − x). (A.4)

Using (A.2), (A.3) and (A.4) we get

dJ

dx
= W(y)

2(1 + W(y))x2
j (x), (A.5)

where we have set

j (x) = 2x(1 − x) + 2W(y)(1 − x) − W(y)(1 + W(y)). (A.6)

Since W is positive in (0,∞), the sign of j (x) determines the sign of dJ/dx. The function
j (x) is clearly negative for x > 1. On the other hand, we can rewrite

j (x) = x(1 − 2x) + x(1 − 2W(y)) + W(y)(1 − W(y)). (A.7)

Since W(y) � y and y = x e−x < x � 1/2, if 0 � x � 1/2, it follows from (A.7) that
j (x) > 0 for all x ∈ (0, 1/2). Using (A.3) and (A.4), we can compute

x(1 + W(y))j ′(x) = x(1 + W)[2(1 − 2x) − 2W ] + (1 − x)W [(1 − 2x) − 2W ]. (A.8)

In the interval (1/2, 1) each of the terms on the right-hand side of (A.8) is negative. Hence,
j (x) decreases in (1/2, 1). In summary, j (x) > 0 in (0, 1/2), j (x) strictly decreases in
(1/2, 1) and j (x) < 0 in (1,∞). From here it follows that j (x) has a unique zero in (0,∞).
If we denote xJ by this zero, it follows from the proof that 1/2 < xJ < 1. Numerically,
xJ ≈ 0, 84. �

Definition 2. We define the function G(x) as

G(x) ≡ W(y)(x + W(y))2

x(1 + W(y))
, (A.9)

for all 0 � x < ∞ where, as before, y = x exp(−x), and W denotes the Lambert function.
Concerning the function G(x), in our next lemma, we prove some properties needed in the
main body of the manuscript.

Lemma 2. The function G(x) is positive in (0,∞), it is real analytic, it has a unique maximum
max G ∼ 0.44 taken at xG ∼ 1.95. Moreover, the functions J (x) and G(x) intersect at a
unique point in (0,∞) precisely at x = xJ .

Proof. Let us begin by proving that G and J only cross at xJ , i.e., at the maximum point of
J (x). From (A.1) and (A.9), we see that the equation G(x) = J (x) can be simplified to read

2x − 2x2 − 2xW = W 2 − W,

which is precisely the condition j (x) = 0 (see equation (A.7)), which has only one solution
which we have denoted by xJ . �

Now, using (A.9), (A.3) and (A.4), after some simplifications we can write

dG

dx
= (W + x)W

x2(1 + W)2
g(x), (A.10)

where we have set

g(x) ≡ 2W(y)(1 − x) + (x − W(y))(1 + W(y)) +
1

1 + W(y)
(W + x)(1 − x). (A.11)
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If x < 1, the first and the last term of (A.11) are positive. On the other hand, y < x and
W(y) < y imply that the second term is also positive. Thus, g(x) > 0 if 0 < x < 1.
Moreover, we can regroup terms in (A.11) to write

(1 + W(y))g(x) = (2 − x)(W(y) + x) − xW(y)2 − W(y)3. (A.12)

From (A.12) it follows that g(x) < 0 if x > 2. Finally, we can compute

φ(x) ≡ x(1 + W(y))[(1 + W)g]′, (A.13)

using as before (A.3) and (A.4). After several simplifications, we get

φ(x) = 2W(1 − x) + 2xW 2(x − 2) + 2(1 − x)x + 2W 3(x − 2) − (x2 − W 2)W. (A.14)

If 1 < x < 2, the first four terms of (A.14) are negative. The last term is also negative,
since W < x. In summary, (1 + W)g(x) > 0 in (0, 1), (1 + W)g(x) is strictly decreasing in
(1, 2) and (1 + W)g(x) < 0 in (2,∞). From here it follows that g(x) has a unique zero in
(0,∞). If we denote xG by this zero, it follows from the proof that 1 < xG < 2. Numerically,
xG ≈ 1, 95.

We continue this appendix by giving the leading behaviour of several special functions
that are used in this manuscript. We begin with the leading behaviour of the Lambert function.
From the definition of W we have

W(x) = x − x2 + 3
2x3 − 8

3x4 + O(x5). (A.15)

In fact, W(x) = ∑∞
n=1 xn(−n)n−1/n!. From (A.15) it follows that

W(x e−x) = x − 2x2 + 4x3 − 28
3 x4 + O(x5). (A.16)

For the function F(x), defined by (3) we have

F(x) = 2x2[1 − 2x + 5x2 + O(x3)]. (A.17)

Hence, for J (x) defined by (8) we obtain

J (x) = 3
2x − 4x2 + 10x3 + O(x4), (A.18)

whereas for the function G(x), defined by (11) we get

G(x) = 4x2[1 − 5x + 20x2 + O(x3)]. (A.19)

From (A.19) we obtain the leading behaviour of G−1(x), which is given by

G−1(x) = 1
2x1/2 + 5

8x + 45
64x3/2 + O(x5/2). (A.20)

We end this appendix by proving that both roots R1 and R2 of the equation Emin + α+ =
E(R,L, 1) − α− tend to 0 as L → ∞, see the proof of theorem 2. This is clear for R1 since
it is bounded by Req. Then one has, thanks to (14),

E(R2, L, 1) = cL + Emin ∼ −2L2. (A.21)

Assume first that R2L is bounded below at least for a subsequence of values L which tends to
∞. Then on this subsequence one has

E(R2, L, 1) ∼ −L2 F(R2L)

(R2L)2
,

since F(x)/x is bounded below by a positive constant on [x0,∞[, x0 > 0. Using that
F(x)/x2 < 2 on all intervals [x0,∞[, x0 > 0 this contradicts (A.21). Thus one has R2L → 0
as L → ∞.
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2 in a strong magnetic field described via

a solvable model J. Phys. B: At. Mol. Opt. Phys. 37 2311–20
[2] Brummelhuis R and Duclos P 2001 On the one–dimensional behaviour of atoms in intense homogeneous magnetic

fields Partial Differential Equations and Spectral Theory ed M Demuth and B-W Schulze (Basel: Birkhäuser)
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